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About This Report 

An exponential increase in computational resources (compute) used for artificial intelligence (AI) 
training and deployment has recently enabled rapid advances in AI models’ capabilities and their 
widespread use. The resulting unprecedented demand for AI data centers is already posing challenges 
for U.S. data center construction, primarily because it is difficult to find adequate power grid capacity. 
To allow policy researchers, government agencies, and elected officials to anticipate the impacts of 
future growth in demand, we ask the following questions: 

• How much power would the United States have to provide if it wanted to host a majority of 
upcoming AI chip production?  

• How much power will data centers running the largest training runs require at the current rate 
of growth?  

• What would the consequences on U.S. competitiveness be if the United States cannot meet 
this demand for AI data centers? 

In this report, we provide two extrapolations of recent AI trends to assess future power needs, 
summarize current bottlenecks for rapid data center construction, and discuss what a failure to resolve 
them could mean for U.S. competitiveness. 
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high-consequence, dual-use technologies change the global competition and threat environment, then 
develops policy and technology options to advance the security of the United States, its allies and 
partners, and the world. For more information, contact tasp@rand.org.  
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Summary 

Larger training runs and widespread deployment of future artificial intelligence (AI) systems may 
demand a rapid scale-up of computational resources (compute) that require unprecedented amounts 
of power. We find that globally, AI data centers could need ten gigawatts (GW) of additional power 
capacity in 2025 alone, which is more than the total power capacity of the state of Utah. If exponential 
growth in chip supply continues, AI data centers will need 68 GW in total by 2027—almost a 
doubling of global data center power requirements from 2022 and close to California’s 2022 total 
power capacity of 86 GW.  

Given recent training compute growth, data centers hosting large training runs pose a particular 
challenge. Training could demand up to 1 GW in a single location by 2028 and 8 GW—equivalent to 
eight nuclear reactors—by 2030, assuming that current training compute scaling trends persist. 

The United States currently leads the world in data centers and AI compute, but unprecedented 
demand leaves the industry struggling to find the power capacity needed for rapidly building new data 
centers. Failure to address current bottlenecks may compel U.S. companies to relocate AI 
infrastructure abroad, potentially compromising the U.S. competitive advantage in compute and AI 
and increasing the risk of intellectual property theft. 

More research is needed to assess bottlenecks for U.S. data center build-out and identify solutions, 
which may include simplifying permitting for power generation, transmission infrastructure, and data 
center construction.  
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Chapter 1 

Projecting Power Requirements for AI 
Data Centers 

Artificial intelligence’s (AI’s) demand for computational resources has grown exponentially,1 
driven by increasing training requirements and a rapidly expanding user base. Both developing and 
deploying frontier models take tens of thousands—and soon hundreds of thousands—of AI chips 
(Sevilla et al., 2022). Hence, training and deployment require massive amounts of power (Burkacky et 
al., 2024; Scharre, 2024). For instance, xAI’s Colossus supercomputer in Memphis, Tennessee, 
contains 100,000 AI chips and requires 150 megawatts (MW) of power—the generation capacity of 
around 55 modern wind turbines and the equivalent of about 53,000 U.S. households (Trueman, 
2024; U.S. Geological Survey, 2022).2  

Exponential growth in both (1) the total number of AI chips deployed in the United States and 
(2) the compute used for the largest training runs over the past few years are already leaving the data 
center industry struggling to accommodate record demand (U.S. Department of Energy, 2024). In 
this report, we assess the potential scale of AI data center power requirements under continued 
exponential growth by extrapolating two key trends: (1) growth in total AI chip production and 
(2) growth in compute used for training notable AI models. We then summarize already existing 
challenges for data center construction in the United States and discuss the potential geopolitical 
implications if U.S. AI data center construction cannot meet demand. 

Both our projections assume that recent exponential growth in compute demand will continue. 
Yet, technical limits, chip production bottlenecks, or geopolitical events could disrupt these trends 
(Appendix B).  

Total Power Requirements for AI Infrastructure in the United 
States  

Continued exponential growth in demand would far outpace previous data center expansion. 
AI data center power demand grew tenfold over the last three years—from 0.4 gigawatts (GW) in 
2020 to 4.3 GW in 2023 (Patel, Nishball, and Ontiveros, 2024).3 In 2025, total AI data center 
demand will likely reach about 21 GW of total power capacity, more than a fourfold increase from 

 
1 In the rest of the report, we refer to computational resources as compute. 
2 The average wind turbine generates about 2.75 MW of power. It takes 150 MW / 2.75 MW = 55 wind turbines to power the 
Memphis data center, which could supply about 53,000 households. 
3 For 2020, 0.3 GW × 1.25 PUE = 0.375 GW; for 2023, 3.3 GW × 1.25 PUE = 4.125 GW. 
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2023 and twice the total power capacity of the state of Utah (Patel, Nishball, and Ontiveros, 2024; 
U.S. Energy Information Administration [EIA], 2024). 

Sevilla et al. (2024) estimate that AI chip production could increase between 1.3 and 2 times 
annually until 2030 if demand continues to grow at the current rate. We find that this expansion 
would require about 68 GW of AI data center capacity globally by 2027 and 327 GW by 2030, even 
when accounting for increases in data center power usage effectiveness (PUE) (Figure 1.1). 

Figure 1.1. Estimates of Data Center Power Capacity Required to Host All AI Chips, 2024–2030 

  

SOURCES: Authors’ analysis of data from Patel, Nishball, and Ontiveros, 2024; Srivathsan et al., 2024; Goldman Sachs, 
2024; and EIA, 2023.  
NOTE: We extrapolated power demand of AI data centers by assuming that AI chip supply could grow between 1.3 and 
2 times per year, given continued rapidly growing demand (Sevilla et al., 2024). AI data center power demand in 2024 
was estimated to be about 11 GW (Patel, Nishball, and Ontiveros, 2024). The green line displays the median estimate 
for AI data centers’ future power demand at a 1.7-times annual growth rate in chip supply; the grey uncertainty range 
indicates demand growth between 1.3 and 2 times. We display three external estimates: (1) “SemiAnalysis,” by Patel, 
Nishball, and Ontiveros (2024); (2) “McKinsey,” by Srivathsan et al. (2024); and (3) Goldman Sachs (2024). We further 
display reference lines showing the total power capacity of select U.S. states (as of 2022). See Appendix B for full 
sources and methodology. Note that this figure includes only AI-specific data center demand. Traditional data centers 
grow by about 5 GW per year, which would be added to the demand displayed (Patel, Nishball, and Ontiveros, 2024). 
For illustration: 68 GW power capacity could power about 38 million NVIDIA H100s—the most-used AI chips in 2024. 
327 GW could power about 184 million H100s.a  
a 68 GW / 1.25 PUE / 1,419 watts (W)/H100 = 38 million H100s; 327 GW / 1.25 PUE/ 1,419 W/H100 = 184 million H100s. See 
Appendix A for sources. 
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To put this number into perspective, in 2022, global data center power capacity was about 
88 GW, indicating that AI alone will drive data center growth of 180 percent by 2027 and 460 
percent by 2030 (International Energy Agency [IEA], 2024).4 For another comparison, California 
(the most populated U.S. state) has a total power capacity of 86 GW, and the total power capacity of 
the United States was 1,105 GW in 2022 (EIA, 2023). 

Other estimates of AI data center power needs expect slower demand growth globally: Patel, 
Nishball, and Ontiveros (2024) expect 62 GW of total demand by 2027; Goldman Sachs (2024) 
predicts about 24 GW of total demand by 2030; and Srivathsan et al. (2024) expect about 90 GW by 
2030 (see Figure 1.1). Although details on the authors’ methods were not provided for any of these 
estimates, each likely assumes that AI is experiencing only a brief period of exponential growth. We 
discuss this divergence and other potential limitations in Appendix B. 

It is not certain that the United States is adding power quickly enough to accommodate AI 
data center demand. If the United States wanted to retain a majority (say, 75 percent) of AI compute 
within its borders, it would have to make about 51 GW available to AI data centers by 2027. This is 
in addition to the growing energy demand of non-AI data centers and other consumers in the United 
States, such as electric vehicles, residential homes, and manufacturing (Goldman Sachs, 2024). 

It is difficult to assess whether the United States is building power generation capacity quickly 
enough. This is because even though the United States is projected to add almost 160 GW of 
theoretical power capacity between 2024 and 2028, most of that capacity will come from wind and 
solar, both of which are available only a fraction of the time, greatly reducing the power delivered 
(EIA, undated). Assessing the potential gap between power supply and demand growth in the United 
States would require modeling supply in a more detailed way, as well as additional sources of demand 
besides AI data centers. A comprehensive analysis is beyond the scope of this report, but current 
evidence shows that U.S. companies already face increasing difficulty in finding sufficient grid capacity 
to build data centers that meet AI demand, indicating a challenge that will likely worsen with 
increased training and deployment of AI (Moss, 2024a). 

Making renewable energy sources suitable for AI data centers remains a challenge. The vast 
majority of generation capacity added to the grid in 2024 comes from wind and solar energy (EIA, 
2024). However, because of daily and seasonal variations, power generation from these sources is less 
consistent than traditional sources (such as nuclear, gas, or coal) unless they are combined with energy 
storage (Tozzi, 2023). Current data center design requires power being available more than 99 percent 
of the time (Uptime Institute, undated). Although some developers have indicated that AI training 
workloads could accommodate reduced power reliability, this is not yet done in practice (U.S. 
Department of Energy, 2024). Given these constraints and additional permitting challenges associated 
with using renewable energy, some industry experts emphasize gas power plants, in addition to 
renewables, as an important source of additional capacity to ensure reliability (U.S. Department of 
Energy, 2024). 

To use another carbon-neutral source of power, major AI compute providers have signed deals to 
bring retired nuclear power plants, such as Three Mile Island, back online or are planning to build 

 
4 Assuming an average power utilization of 60 percent for data centers, 460 terawatt-hours (TWh) of power consumption in a 
year corresponds to a power capacity of about 88 GW (460 TWh / 8,760 h / 0.6 = 87.5 GW). 
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small modular reactors (Wong, 2023; Moss, 2024b). However, it will likely take years until additional 
nuclear capacity from these sources will come online (Fist and Datta, 2024). 

Given the reliability issues for wind and solar and long lead times for nuclear and geothermal 
energy, there will likely be a trade-off between decarbonization goals and AI data center build-out in 
the United States (Fist and Datta, 2024). AI data centers’ demand for reliable supply may require 
delaying the retirement of coal and gas power plants and potentially even establishing additional gas 
power plants. 

Power Requirements for AI Training 
AI training presents a unique challenge because it requires large amounts of power capacity 

available at a single location. The compute used to train the most advanced models is rapidly 
increasing by about 4 to 5 times every year (Sevilla and Roldán, 2024a; Sevilla et al, 2022). Meanwhile, 
the energy efficiency of AI chips has grown much more slowly (only about 1.3 times per year), and 
data center PUE has only moderately improved recently (Hobbhahn, Heim, and Aydos, 2023; 
Taylor, 2024). Extrapolating these trends highlights that, in 2027, a data center hosting AI training 
may require as much power as a typical nuclear power plant can generate (Figure 1.2). In 2029, the 
power required for a single AI training cluster may even surpass all data centers in Northern 
Virginia—the world’s largest data center hub—combined. While decentralized training across 
multiple data centers could reduce the burden on a single location, in practice, most AI developers still 
build large, centralized clusters.5 Furthermore, even if a 2029 training run could be split among, say, 
four clusters, each of these clusters would still require more than 1 GW of power capacity.  

 
5 Recent examples, such as Google’s approach with Gemini training (Anil et al., 2024), show attempts at multi–data center 
distribution. However, details are limited (such as the number of data centers), and Google may have used only a small number of 
closely located facilities. Meanwhile, other reported efforts for large clusters rely on a single centralized location (Kahn, 2024; 
Trueman, 2024). 
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Figure 1.2. Extrapolation of the Power Required for the Data Center Hosting the Largest AI 
Training Run 

 

NOTE: We model power requirements for future frontier model training runs and estimate they will increase by 2.7 
times per year. We assume the floating point operations (FLOP) used for training the largest AI models continue to 
grow fourfold every year. We model graphics processing unit (GPU) power efficiency improvements of 1.3 times per 
year and data center PUE to improve from 1.25 to 1.05 by 2030. We further assume that training run duration increases 
from 100 days for Google’s Gemini to 200 days by 2030. The y-axis shows the data center power capacity required for 
hosting the supercomputer running the training of future frontier models. We include four data points: a hypothetical 
cluster used for training Google’s Gemini model and three clusters for hypothetical future models. (Google’s Gemini 
was first released in December 2023, but given that it trained for 100 days, the cluster it trained on must have existed 
at least 100 days before release, so we display the data point 100 days before release [Epoch AI, 2024].) For each 
model, we display the training compute in 8-bit FLOP, the data center power capacity required, the number of H100 
equivalents required to achieve the same performance, and the hardware price, assuming that an H100 cost $30,000 
in 2023 and the price per FLOP improved by 2 times every 2.1 years. We display three reference points for context: a 
typical nuclear power plant (Office of Nuclear Energy, 2022); the combined capacity of all data centers in the Northern 
Virginia region, the world’s largest data center hub (Clabaugh, 2023); and the capacity of China’s Three Gorges Dam, 
the world’s largest power plant (U.S. Geological Survey, undated). See Appendix B for methods and data sources. eq. = 
equivalents; k = thousand. 

Limitations of Extrapolations 
Both projections assume that current exponential trends will continue for the next six years. This 

is because compute scaling has been consistent for more than a decade and because in 2024 several 
hyperscalers announced ambitious plans to continue growing their compute capacity (Vanian, 2024; 
Metz and Mickle, 2024; Herrera, 2024, Sevilla et al., 2024). Yet, diminishing returns to AI scaling, 
geopolitical events, or a lower growth in chip supply could all reduce the investment available for 
infrastructure build-out. 
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We further assume only moderate energy efficiency improvements, consistent with recent trends. 
Breakthroughs in energy efficiency could reduce the power required for future AI chips. We discuss 
these and other limitations in Appendix B.  
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Chapter 2 

Challenges for Rapid AI Data Center 
Construction in the United States and 
Their Implications 

To assess current challenges for rapidly expanding power generation and data center construction, 
we summarize common causes for delays cited in recent reports and analyses. We find that permitting 
challenges for power generation, distribution, and data center construction are common causes 
that delay data center projects. 

1. Insufficient power generation: A lack of power generation addition is increasing wait times 
for grid connections. For instance, in Virginia, the state with the largest share of data centers, 
connection requests now take between four and seven years (Saul, 2024). This is in part 
because of permitting challenges for various power generation projects (Bauer et al., 2024). 

2. Inadequate transmission infrastructure: Even when power is available, regions often lack 
transmission lines to deliver the power to sites suitable for data center construction. Projects 
to expand transmission infrastructure are difficult to coordinate and can take years (Potter, 
2024). 

3. Data center permitting issues: Large data center projects face a variety of permitting 
challenges on the local, state, and federal level, limiting suitable sites and sometimes causing 
project delays and cancelations (Kurtz, 2023; Spivack, 2023). 

4. Supply chain delays: Data centers need a wide variety of inputs. Some, such as emergency 
power generators, now have waiting times of more than one year. Supply chain issues greatly 
delay data center construction (Dotan and Fitch, 2024). 

5. Environmental commitments and regulations: Data centers are subject to government 
regulations that limit their use of certain forms of energy, such as natural gas (Department of 
Ecology, State of Washington, undated). Given the constraints that these commitments and 
regulations place on data center construction, compute providers’ ability to procure sufficient 
power can trade off against environmental considerations (Coleman, 2023).  

In combination, these factors cause an increasing gap between data center supply and demand, as 
evidenced by historically low vacancy rates for colocation data centers that host hardware for business 
customers. As a consequence, almost 80 percent of upcoming data center space is already pre-leased 
ahead of completion (CBRE, 2024). 

A shortage of data center infrastructure could lead to less compute being available to companies 
and researchers, potentially slowing down AI development and deployment. It could further provide 
an advantage to large compute providers that have the capital to invest in future infrastructure build-
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out years ahead and thus outcompete smaller market participants. Finally, a lack of data center 
infrastructure in the United States could cause data center construction to shift to other countries. In 
the next section, we discuss the potential geopolitical implication of such a shift. 

Geopolitical Implications 
Inadequate power may reduce the U.S. lead in AI compute. The United States leads the world 

in number of data centers and market share of compute providers (Sastry et al, 2024). Although no 
direct estimates exist, this indicates that the United States likely hosts a significant majority of all AI 
chips. However, the current challenges in power availability for rapid data center construction could 
reduce this advantage. An increasing number of U.S. companies are considering expanding their AI 
infrastructure to countries that offer more power availability, faster permitting, and additional 
financial incentives (Shoaib, 2024). For instance, Microsoft recently invested $1.5 billion in the 
United Arab Emirates’ G42 for AI and AI infrastructure projects (Microsoft, 2024a; Microsoft, 
2024b; “Abu Dhabi’s US$302 Billion Fund Deepens AI and Private Credit Push,” 2024; World 
Nuclear Association, 2024). This trend of companies looking abroad for AI infrastructure 
development raises several concerns for the United States’ position in the global AI landscape. The 
following sections outline why this shift is problematic and its potential implications for U.S. 
leadership in AI technology and innovation. 

Compute is a primary enabler of AI progress; leading in compute enables leading in AI. 
Recent breakthroughs in AI have largely relied on a massive increase in compute used for training AI 
models (Sevilla and Roldán, 2024a). In other words, the success of a country’s AI industry relies on 
access to specialized compute and the infrastructure needed to host it (Khan and Mann, 2020). 
Furthermore, the more compute a country has access to, the wider it can deploy its AI models. This 
may allow the country to derive economic and military advantages by deploying relevant AI models on 
a larger scale than competitors (Pavel et al., 2023). Some AI experts further predict that future AI 
systems will possess capabilities highly relevant to national security, such as automated warfare and 
biological weapons (Bengio et al., 2024). Controlling a large share of AI infrastructure could allow the 
United States to mitigate such risks and help ensure that AI use is aligned with democratic values.  

Supplying AI chips to additional countries could complicate enforcement of semiconductor 
export controls. Controlling AI chip supply allows the United States to impose export controls on 
China and other international competitors to slow their advances in AI (Allen, 2022). However, the 
more chips the United State exports beyond close allies, the more opportunities it gives China to 
smuggle them (Fist and Grunewald, 2023). Retaining chips within the United States and providing 
cloud access could allow the United States to provide AI compute to other countries without 
increasing the risk of smuggling (Fist and Scharre, 2023). 

As AI models get more capable, securing AI compute becomes increasingly challenging, 
particularly abroad. The infrastructure hosting advanced AI models will likely become a target of 
increasingly sophisticated cyberattacks (Nevo et al., 2024). This risk is significantly amplified when 
compute resources are located outside U.S. borders, where oversight and control are more limited. 
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Potential Options to Limit National Security Risks of Compute 
Exports 

Given the geopolitical importance of compute, it may be in the U.S. interest to retain a large share 
of it within U.S. borders. However, if a lack of power availability and permitting issues mean that the 
United States can host only a limited number of AI chips, the following measures can mitigate some of 
the downsides of compute exports. 

The United States could track AI chip exports to assess the global distribution of compute. 
While the United States leads in data center capacity and AI chip supply, the exact amount of AI 
compute within its control remains unclear (Pilz and Heim, 2023; Sastry et al., 2024). The United 
States currently tracks exports only to a limited number of jurisdictions (Dohmen and Feldgoise, 
2023). To better assess global compute distribution, the United States could implement a tracking 
system for national AI computing power. Such a system could collect sales data from AI chip suppliers 
and inventory information from major data center providers. Data about the global distribution of AI 
chips would allow the United States to assess it relative position compared with other countries and 
help address national security risks from misuse of AI chips by foreign governments. 

Projects run by U.S. companies and strict security and reporting requirements could reduce 
security risks. One option to maintain U.S. control over AI chips exported to countries that are not 
U.S. allies or partners could be to favor projects led by U.S. companies to limit foreign government 
influence (Chou, 2024). Additionally, the U.S. government could set conditions for export licenses. 
For instance, it could require companies purchasing AI chips to demonstrate compliance with 
rigorous physical and cybersecurity standards and to commit to reporting security incidents—such as 
cyberattacks, sabotage, or misuse of infrastructure and models—to relevant U.S. security agencies. 
These requirements could help protect advanced AI models and other intellectual property of U.S. 
companies running on infrastructure abroad from theft. Finally, to prevent misuse of compute 
resources, export licenses could further require AI chip owners to adopt know-your-customer 
practices and regularly report data on compute users and use types to the U.S. government (Egan and 
Heim, 2023; Nevo et al., 2024). 

Although these strategies can reduce some of the risks compute exports introduce, such exports 
still reduce the U.S. strategic advantage in compute overall and thus limit U.S. diplomatic, economic, 
and innovation power, as outlined previously. In the next section, we summarize further research that 
could help more comprehensively assess AI data center power needs and approaches to reducing 
power supply bottlenecks.  

Suggestions for Future Research 
We summarize some topics for research that could help better quantify power supply challenges 

and identify and assess causes and solutions for bottlenecks in AI data center build-out. 
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Quantifying Data Center Power Demand and Supply 
• Model future increases in power grid supply and compare them with data center demand. 

A comprehensive model of power supply in the United States could help predict increases in 
supply and demand. This model should factor in the reliability and availability of different 
energy sources to adequately account for the fact that data centers need reliable power around 
the clock.  

• Assess factors that may reduce future power demand of AI data centers. Research on 
decentralized training could help understand how much power AI training will require in a 
single location. Research on potential efficiency increases in AI chips could further increase 
accuracy of demand forecasts. Finally, modeling scenarios for future AI chip production would 
directly inform future data center demand. 

• Continue studying potential bottlenecks to scaling of training and inference compute. One 
key uncertainty is the extent to which frontier AI developers will continue scaling the compute 
used to train and run inference on AI systems. For example, it is possible that training will 
soon be bottlenecked by latency issues (Erdil, 2024) or that data scarcity could undermine the 
business case for continued scaling (Villalobos et al., 2024). Although previous work suggests 
that power capacity bottlenecks will be reached before other constraints, further research is 
needed (Sevilla et al., 2024). 

Causes and Solutions for Data Center Construction Challenges 
• Identify which state or federal regulations may limit the expansion of U.S. energy capacity 

for AI training runs and assess the feasibility and desirability of streamlining these 
regulatory processes. Regulations—such as environmental review processes, permitting 
requirements, and other regulatory standards—affect the development and implementation of 
projects that generate and distribute energy, such as the development of transmission lines 
(Datta and Coleman, 2024). Recent commentators have analyzed how these regulatory 
processes may limit clean energy generation (Potter, Datta, and Stapp, 2022). Future research 
could similarly assess the extent to which these regulations limit power availability for future 
AI development. If regulatory barriers do pose obstacles to energy construction, future work 
could investigate ways that these regulatory processes may be reformed or streamlined. For 
example, in the past, federal agencies have used programmatic environmental assessments and 
impact statements (National Institute of Justice, 2019) to expedite environmental review for 
large infrastructure projects (Bureau of Land Management and U.S. Department of Energy, 
2010). Future work could identify similar approaches that could simplify permitting for data 
center–related projects.  

• Investigate opportunities for expanding power generation and distribution for data 
centers. AI compute providers have indicated particular interest in natural gas (Kimball, 
2024), small modular nuclear reactors (Ohnsman, 2024), and geothermal energy (“Meta 
Platforms Strikes Geothermal Energy Deal to Power US Data Centers,” 2024) to scale up 
their compute resources. Compute providers have also indicated interest in improving the 



 11 

electrical grid’s capacity to deliver energy to data centers (Petersen, 2024). The Department of 
Energy identified several opportunities for energy generation and distribution to be expanded 
to meet the power demands of data centers (U.S. Department of Energy, 2024). Future 
research could assess the feasibility, scalability, and environmental impact of the Department 
of Energy’s suggestions.  

• Develop and evaluate options for state and federal responses to energy shortfalls. The 
federal government has historically leveraged government-owned resources to accelerate power 
generation and transmission (Raby, 2017). Future research could assess the extent to which 
these resources (e.g., unused federal land) could be used for data center–related projects. 
Additionally, compute and energy for AI may be critical for national security (Pavel et al., 
2023). Federal authorities related to emergency response or defense preparedness could be 
leveraged to expand U.S. energy production (Majkut and Nakano, 2023). For example, the 
Defense Production Act has been used to expand clean energy production (U.S. Department 
of Energy, 2022). Future research could determine whether similar authorities could be used 
to bolster energy production and distribution for data centers. 

• Assess the ability of private companies to meet energy shortfalls. AI companies have 
successfully raised billions of dollars (Ghaffary et al., 2024), enabling them to spend tens of 
millions of dollars on AI training runs (Cottier et al., 2024). However, some commentators 
project that frontier models could cost billions of dollars to train by 2030 (Scharre, 2024). As 
this paper suggests, energy demand is a key driver of AI training and inference costs. Future 
research could assess AI and data center companies’ ability to generate and distribute enough 
energy to satisfy future demand, with or without government support. 
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Appendix A 

Approach, Methods, and Sources 

In this appendix, we describe the assumptions, sources, and methods used to generate Figures 1.1 
and 1.2, as well as our approach to identifying current challenges for data centers and further research. 

Method and Sources for Figure 1.1 
In Figure 1.1, we display an estimate of the future power needs of AI data centers, assuming 

continuing exponential growth in chip supply. Patel, Nishball, and Ontiveros (2024) report that data 
center information technology (IT) power demand grew from 3.3 GW in 2023 to 8.5 GW in 2024, 
which corresponds to a data center power capacity—the power required for the entire data center, 
including not just the hardware but also cooling and power conversion—of 4.3 GW and 10.6 GW, 
respectively (see Table A.1). Sevilla et al. (2024) estimate that global chip supply could grow between 
1.3 and 2 times annually between 2024 and 2030, with a median of 1.7 times.  

For our main projection (the curve labeled “Estimate based on growth in AI chip supply” in Figure 
1.1), we display the median estimate, which anchors on the SemiAnalysis estimate for 2024 of 10.6 
GW and projects it forward by multiplying the chip production growth of the previous year by 1.7 for 
each year. We further display an uncertainty interval around the median estimate, derived from 1.3 
and 2 times growth, respectively. We estimated the total data center power capacity by multiplying by 
the PUE for each year (see Table A.1). To account for efficiency gains, we assumed continual 
improvement in PUE from 1.25 in 2024 to 1.05 in 2030 (Patel, Nishball, and Ontiveros, 2024). 

We further display three external estimates by Goldman Sachs (2024); Srivathsan et al. (2024), 
labeled “McKinsey”; and Patel, Nishball, and Ontiveros (2024), labeled “SemiAnalysis.” We display 
the y-axis on a log scale to better capture exponential increases in demand. 

To contextualize the scale of power demand, we add the capacity of three U.S. states: Utah, 
Virginia, and California (EIA, 2023). 

Tables A.1 through A.4 provide an overview of the data used in Figure 1.1. 
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Table A.1. SemiAnalysis Data on AI Data Center Power Demand  

Year IT Power (MW) 
PUE (with Efficiency 

Increases) 
Data Center Facility Power 

Demand (GW) 

2020 318 1.38 0.440 

2021 640 1.35 0.864 

2022 1,102 1.32 1.451 

2023 3,332 1.28 4.28 

2024 8,499 1.25 10.6 

2025 16,356 1.22 19.9 

2026 28,140 1.18 33.3 

2027 41,337 1.15 47.5 

2028 56,280 1.12 62.8 

SOURCE: Authors’ analysis of data from Patel, Nishball, and Ontiveros, 2024. 

Table A.2. AI Data Center Power Demand Data for Estimate Based on Growth in AI Chip Supply 

Year 

Data Center IT Power Demand Based on 
Exponential Chip Growth  

Data Center Facility Power Demand Based 
on Exponential Chip Growth 

Lower 
Confidence 

Interval Median 

Upper 
Confidence 

Interval 

PUE (with 
Efficiency 
Increases) 

Lower 
Confidence 

Interval Median 

Upper 
Confidence 

Interval 

2024 5.2 5.2 5.2 1.25 6.5 6.5 6.5 

2025 6.7 8.8 10.3 1.22 8.2 10.7 12.6 

2026 8.7 14.9 20.7 1.18 10.3 17.7 24.5 

2027 11.4 25.4 41.3 1.15 13.1 29.2 47.5 

2028 14.8 43.2 82.7 1.12 16.5 48.2 92.3 

2029 19.2 73.4 165.3 1.08 20.8 79.5 179.1 

2030 24.9 124.7 330.7 1.05 26.2 131.0 347.2 

SOURCES: Growth factors are derived from Sevilla et al., 2024; starting value in 2024 is derived from Patel, Nishball, 
and Ontiveros, 2024. 

  



 14 

Table A.3. AI Data Center Power Demand Data from Goldman Sachs 

Year U.S. AI (TWh) Other AI (TWh) Sum (TWh) Sum (GW) 

2020 2 3 5 0.6 

2021 2 4 6 0.7 

2022 3 5 8 0.91 

2023 4 8 12 1.37 

2024 11 19 30 3.4 

2025 22 36 58 6.6 

2026 37 57 94 10.7 

2027 53 78 131 15.0 

2028 69 95 164 18.7 

2029 83 107 190 21.7 

2030 93 116 209 23.9 

SOURCE: Authors’ analysis of data from Goldman Sachs, 2024. 

Table A.4. AI Data Center Power Demand from McKinsey 

Year AI Power Demand (GW) 

2023 8.3 

2024 11.4 

2025 14 

2026 17.1 

2027 24.7 

2028 37.2 

2029 57.2 

2030 89.9 

SOURCE: Authors’ analysis of data from 
Srivathsan et al., 2024. 
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Method and Sources for Figure 1.2 
For Figure 1.2, we extrapolate the power required for future AI compute clusters based on trends 

in training compute growth and efficiency improvements in AI accelerators.  
To estimate the power required for a training run each year, we first calculate the AI accelerator 

efficiency: 

Efficiency = Performance / Power Capacity 

We assume a hardware efficiency based on NVIDIA’s DGX H100—the most used AI chip for 
frontier AI training at the time of this writing—which has a performance of 1.98e15 8-bit FLOP per 
second (FLOP/s) and requires 1,419 W per chip, considering all cluster components (NVIDIA, 
2023). To model efficiency increases, we assume a continuation of the 1.3-times FLOP per watt 
improvement trend for AI chips each year (Hobbhahn, Heim, and Aydos, 2023). For a given year, we 
calculate the efficiency as follows: 

Efficiency = Performance / Power Capacity × 1.3(Year − 2023) 

We further estimated the cluster performance required in FLOP/s for a given training run by 
dividing the total training compute in FLOP by the training duration, which we assume to be 100 
days in December 2023 and to linearly increase to 200 days by 2030 (Epoch AI, 2024). 

Cluster Performance = Training Compute / Training Duration 

At the time of this writing, Google Gemini, released on December 6, 2023, was the largest known 
training run at 5e25 FLOP (Epoch AI, 2024). The FLOP used to train frontier AI models has 
increased by 4 to 5 times each year between 2010 and 2024 (Sevilla and Roldán, 2024). For estimating 
the size of the largest training run for a given date, we anchor on Gemini’s training run and then 
increase the training compute by 4 times per year. Because Gemini likely trained for about 100 days, 
we display the cluster needed to train it 100 days before its release in December 2023 (Epoch AI, 
2024). 

We then estimate the total data center power capacity required, accounting for the fact that, for 
large training runs, AI hardware typically has a low utilization factor: 0.34 in the case of GPT-4 (Patel 
and Wong, 2023). We further multiply by a PUE factor, which is the conversion factor from IT 
power capacity to total data center power capacity. Because of efficiency improvements, we assume 
that PUE linearly decreases from 1.25 in 2023 to 1.05 by 2030 (Patel, Nishball, and Ontiveros, 2024; 
Fist and Datta, 2024).  

Data Center Power Capacity = Cluster Performance / (Efficiency × 0.34) × PUE 

Using the data center power capacity required over time, we display data for a hypothetical cluster 
required for an illustrative training run every two years. The first data point is a hypothetical cluster 
used for training Google’s Gemini. The following three data points are clusters required for training 
models consistent with training compute and hardware trends. For each data point, we show the 
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number of 8-bit FLOP used. We further show the number of H100 that would have the same 
performance.6 For the GPU cost, we assumed that an H100 cost $30,000 in 2023 and that price-
performance in cost per FLOP/s improves by 2 times every 2.1 years (Hobbhahn, Heim, and Aydos, 
2023; Eadline, 2023). 

To put the scale of required power into perspective, we add three horizontal lines as reference 
points: 

• The generation capacity of a typical nuclear reactor (Office of Nuclear Energy, 2022). 
• The total data center capacity of the Northern Virginia data center hub in 2023, the currently 

largest aggregation of data centers in the world (Clabaugh, 2023). 
• China’s Three Gorges Dam, the world’s largest power plant, supposed to provide an upper 

bound on how large power plants can be (U.S. Geological Survey, undated). 

We run our code in Google Colab to estimate the increase in power requirements each year and to 
generate the plot.  

Methods for Summarizing Data Center Construction Challenges 
and Suggesting Topics for Further Research  

To understand the challenges that AI data center construction currently faces, we consulted 
multiple sources. We collected academic publications through Google Scholar, using such search 
terms as “AI data center challenges,” “AI data center power,” and “AI data center permitting.” 
However, because the rapid growth in AI data center power requirements is a recent phenomenon, 
academic research is currently limited. While existing studies analyze and project data center power 
requirements, they predate the current surge in AI-driven demand. Although some publications 
explore specific energy efficiency improvements, they do not address the macro-level trends in AI 
power requirements that are central to our analysis. 

To capture current industry developments, we expanded our literature search to include industry 
sources and publications. We monitored leading industry news sources—including Data Center 
Dynamics, Data Center Knowledge, and Data Centre Magazine—throughout our research process. 
We conducted targeted searches using such terms as “AI data center challenges,” “AI data center 
power,” and “AI data center permitting.” Drawing on our previous research experience with compute 
supply chains and data centers, we identified authoritative sources, prioritizing government 
publications (such as Department of Energy reports) and industry sources with transparent 
methodologies. We also analyzed reports from SemiAnalysis, an industry intelligence group 
specializing in AI hardware and data center coverage, to understand emerging trends and challenges. 

To find topics for further research, we additionally surveyed the literature for recent permitting 
challenges for data centers, power generation, and grid infrastructure. We also drew from discussions 
and readings suggested by other researchers throughout the research project. 
  

 
6 Note that the H100 equivalents are equivalent in performance but would require significantly more power, given the power 
trendline factors in efficiency improvements for future AI accelerators. 
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Appendix B 

Limitations of Estimates 

In this appendix, we discuss the limitations of our model approaches. 

Total AI Data Center Power Needs (Figure 1.1) 
General Trend 

Our exponential growth scenario is more aggressive than the other three scenarios provided (Patel, 
Nishball, and Ontiveros, 2024; Srivathsan et al., 2024; and Goldman Sachs, 2024). Given that none 
of those reports fully explain its approach, it is not possible to directly assess the different results. 
However, our central assumption is that exponential demand growth will continue and the chip 
industry will grow exponentially to accommodate this growth (Sevilla et al., 2024). At least in the 
short term, this assumption is consistent with IEA (2024), which estimates that data center demand 
will increase tenfold between 2023 and 2026.  

We assumed exponential growth because compute scaling has now lasted for more than a decade, 
and spending has increased by several orders of magnitude (Cottier et al., 2024; Sevilla and Roldán, 
2024). Furthermore, key companies in AI compute—such as Meta, Amazon Web Services, and 
OpenAI—are planning to invest hundreds of billions into AI infrastructure (Vanian, 2024; Metz and 
Mickle, 2024; Herrera, 2024). Our extrapolation would be much more modest if investment increased 
less rapidly or should there be supply chain bottlenecks for AI chips. Yet, given sustained growth in 
both investment and chip supply, these two trends seem unlikely to occur within the next few years. 

Efficiency Improvements 
The U.S. Department of Energy (2024) suggests that future breakthroughs in energy efficiency of 

training and inference may reduce the power required for AI data centers. Our analysis already 
accounts for potential increases in data center efficiency by assuming that PUE will fall from 1.25 to 
1.05. Additional improvements would be marginal because 1.0 is the lowest value PUE can be, 
indicating no power overhead for the data center infrastructure. Our analysis assumes that chip 
production volume will grow but power use per chip will remain constant. This is consistent with the 
overall trend in power required per chip of machine learning GPUs (Hobbhahn, Heim, and Aydos, 
2023). However, although data on the most used GPUs is too scarce to find a statistically significant 
trend, Hobbhahn, Heim, and Aydos (2023) also note that the steady increase in power required for 
NVIDIA’s last four AI chips (the V100, A100, H100, and B100) could suggest that power 
requirements are increasing. Yet, if power requirements of future chips fell while price-performance 
improvements continued, this would mean lower power demand from AI chips. 
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Lack of Approaches 
Another limitation of our estimate is that it uses only one of several potential methods of 

estimating power requirements. We chose chip production primarily because it is simpler than such 
methods as aggregating power procurement by data center companies or extrapolating investment and 
because there were public estimates available for chip production, whereas the other data sources were 
not publicly available. 

General Skepticism of Forecasts 
Finally, there is also a broader reason to be skeptical of power estimates for new technologies, 

given that previous forecasts have overestimated power needs (Meyer, 2024). Yet, uncertainty about 
technology could lead our estimates to be skewed in either direction and thus does not necessarily 
indicate that our extrapolation is an overestimate. 

Data Centers Hosting the Largest Training Runs (Figure 1.2) 
Continued Rate of Compute Scaling 

Our extrapolation assumes that AI companies will continue to increase computational resources at 
current rates until 2030 (Sevilla et al., 2024). However, various factors could lead to slower compute 
scaling rates, resulting in lower power requirements for the largest data centers. These factors include 
diminishing returns for scaling AI, bottlenecks (such as running out of training data), or lack of chip 
supply. 

Despite these potential challenges, we believe the current scaling trends are likely to continue for 
several reasons: 

• A 2024 Epoch AI investigation assessed potential limitations in training data, chip supply, and 
network architecture and found it plausible that current scaling rates could persist until 2030, 
given continued improvements in AI (Sevilla et al., 2024). 

• The compute scaling trend has been consistent for more than a decade, suggesting a robust 
pattern (Sevilla et al., 2024). 

• Empirical scaling laws suggest continued improvement of AI capabilities with increasing 
training compute (Villalobos, 2023). 

• Major AI companies are planning significant investments in AI infrastructure, indicating their 
commitment to expanding compute resources (Vanian, 2024; Metz and Mickle, 2024; 
Herrera, 2024). 

Although unforeseen events or technological shifts could alter this trajectory, the current evidence and 
industry behavior support our assumption of continued scaling in computational resources for AI 
training. 



 19 

Efficiency Improvements 
We factored in improvements in PUE from 1.25 to 1.05, and we accounted for AI chip efficiency 

increases by 1.3 times each year (Hobbhahn, Heim, Aydos, 2023; Fist and Datta, 2024). Yet, future 
hardware developments could lead to higher or lower efficiency gains, adding additional uncertainty. 

Decentralized Training 
Our extrapolation disregards the potential for training across several data center locations. Recent 

examples, such as Google’s approach with Gemini training (Anil et al., 2024), show attempts at 
multi–data center distribution. However, details are limited (such as the number of data centers), and 
Google may have used only a small number of closely located facilities. Meanwhile, other reported 
efforts for large clusters rely on a single centralized location (Kahn, 2024; Trueman, 2024). If by 2030, 
the largest training run was conducted across four clusters, it would require about 1 GW of power for 
each of the four. Although this would still be an unprecedented amount of power for each of the four 
clusters, it could greatly reduce challenges with finding adequate capacity in a single location.  
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Abbreviations  

AI artificial intelligence 
EIA U.S. Energy Information Administration 
FLOP floating point operations 
FLOP/S floating point operations per second 
GPU graphics processing unit 
GW gigawatt 
IEA International Energy Agency 
IT information technology 
MW megawatt 
PUE power usage effectiveness 
TWh terawatt-hour 
W watt 
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